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Abstract

In this paper, the performance of a group of autonomous
vehicles tracking a prescribed goal is analyzed.  The vehicles are
considered to be ground-based unmanned robots acting as a
group to maintain an unbroken communication network in a
building or some other region.  Vehicle interactions are modeled
as a chain of interconnected systems.  The stability of the entire
collective as well as individual vehicles is studied using large-
scale systems theory.  Stability can be controlled via two key
parameters: vehicle speed constant (maximum vehicle speed
times sample time) and vehicle interaction gain.  In addition to
the stability analysis, simulation of a group of vehicles in a
building with walls, doors, and other obstacles is studied with
respect to maintaining a communication network among the
vehicles at all times.

1. Introduction

As part of a project for DARPA’s ITO Software for Distributed
Robotics Program, Sandia National Laboratories is developing
analysis and control software for coordinating hundreds to
thousands of autonomous cooperative robotic agents performing
military operations such as reconnaissance, surveillance and
target acquisition; countermine and explosive ordnance disposal;
force protection and physical security; and logistics support.
Due to the nature of these applications, the control techniques
must be distributed, and they must not rely on high bandwidth
communication between agents. The goal of this work is to
coordinate the behavior of a large number (10s to 100s to 1000s)
of autonomous robotic agents performing various maneuvers.
The algorithms to control these agents must be safe (provably
stable and convergent), covert (low communication bandwidth),
and fault tolerant (decentralized).

We have focused our effort on the task of surveillance wherein
large numbers of vehicles from 20 to 1000 are dispersed around
a facility.  The goal is for these vehicles to autonomously create
a distributed communication/navigation network that links a
remote base station to multiple surveillance points.  We have
simulated in great detail the control of low numbers of vehicles
(up to 20) navigating throughout a building.  These simulations
include detailed models of the radio frequency communication,
infrared and ultrasound ranging with the environment and
amongst vehicles, and the vehicle kinematics.

Techniques of large-scale systems theory are employed in
analyzing the stability of these vehicles such as are described in
[1].  More advanced techniques that use adaptive control [4] or
variable structure control [5] are also being considered.  The
following sections describe the details on the stability analysis
and the simulation results.

2.  Stability Analysis for One-Dimensional Case

The subject of cooperative multiple autonomous vehicles has
generated a great deal of interest in recent years due to the vision
of these vehicles being able to perform tasks faster and more
efficiently than an individual vehicle.  Such tasks can include
operations in hazardous or remote environments with the robot
performing repetitive, dangerous, or information gathering
duties.  Recent work has taken many different approaches.  The
strategies employed are based on diverse fields such as artificial
intelligence, game theory, biology, distributed control, and
genetic algorithm1s.  Because we are interested in proving
convergence and stability of algorithms, we have been
investigating using large-scale system control theory, as for
example given in [1].

In complex large-scale systems, it is often desirable to break up
a system into smaller strongly coupled systems that are
controllable.  If we can prove that the smaller systems are
input/output reachable and controllable, then we can prove that
the large-scale system is connectively controllable.  Even the
smaller scale systems may contain thousands of states, in which
case, there exist techniques that can quickly determine whether
the system is input/output reachable and structurally
controllable.   The analysis below shows some of the progress
made in understanding how these techniques can be used in the
design of large-scale distributed cooperative robotic vehicular
systems.

We start by analyzing a simple one-dimensional problem in
which a linear chain of interdependent vehicles is to spread out
along a line as shown in Figure 1.  The objective is to spread out
evenly along the line using only information from the nearest
neighbor.  We had previously developed a robotic perimeter
detection system that spread the vehicles around a perimeter
using one-half the distance between the neighboring two
vehicles as the goal point for each vehicle [3].   We were
interested in finding out if one-half was a magic number and if
we could prove that it provides a stable solution.

Assume that the vehicle’s plant model is a simple integrator, and
the commanded input is the desired velocity of the vehicle along
the line.  A feedback loop and a proportional gain Kp are used to
control the vehicle’s position.  The desired position of each
vehicle is one-half the sum of the position of the neighbors on
each side.  Figure 2 shows a block diagram of the control
system.  The formulation is in the discrete-time frequency
domain, i.e. the z domain.  Since we are interested in steady
state analysis, we will make heavy use of the final value
theorem, which states
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Figure 1.  One-dimensional control problem.  The top line is the
initial state.  The second line is the desired final state.  The
vehicles can only use their neighbors’ position to reach the final
goal state.

Figure 2.  Control block diagram of two-vehicle interaction
problem.

If we let H1(z) be the transfer function Y1(z)/U1(z) and H2(z) be
the transfer function Y2(z)/U1(z) then we have
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where we have used the fact that U1(z) = 1/(1-z-1), i.e., u1(kT)=1
for all k.  That is, the desired linear positioning behavior has
been normalized to be between 0 and 1.  The superscript “ss”
refers to the steady state value.  Carrying out the block diagram
manipulation and algebra, one arrives at the formulas for the
steady state position values of the two vehicles in terms of the
given parameters
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where 1λ  and 2λ  are the interaction gains (which are 0.5 in

Figure 2).  It should be noted that both steady state positions are
independent of the delays n1 and n2, the proportional gain Kp,
and the sampling time delay T.  Likewise, the formulas for the
interaction gains, given the steady state positions, are
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These formulas assume a stable configuration.  We will analyze
stability shortly.  Now consider the three-vehicle case.  Using
the same analysis as above, we can arrive at the steady state
positions (assuming stability) for the three vehicles as
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where again only the vehicle interaction gains affect the steady
state position values.  To solve the inverse problem, i.e., the
vehicle interaction gains given the steady state positions, we
must solve an under-determined system of nonlinear equations
with 3 equations and 4 unknowns.  This can be done using a
nonlinear root finding algorithm such as employed in the
MATLAB (trademark of The MathWorks, Inc.) routine, fsolve.
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Figure 3.  N-vehicle interaction problem.

To generalize the above for the N vehicle interaction problem
(shown in Figure 3), we formulate a set of linear equations based
on the algebra of the transfer function manipulation.  Note that
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where i is an integer such that  ]1,2[ −∈ Ni .

This results in the system of linear equations
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which can be reformulated in the familiar Ax=b form
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Thus, given the steady state position values, the required
interaction gains can be solved for from a system of linear
equations.  The solution will not be unique, hence many
different sets of interaction gains can result in the same steady
state position values of the vehicles.  Likewise, the inverse
problem can be solved to determine the interaction gains given a
set of desired steady state vehicle position values.  We obtain
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In this case, Ax=b is an under-determined system (more
unknowns than equations, 2(N-1)>N for N>2) which can be
solved using QR factorization such as with the MATLAB
backslash (\) operator.  Alternatively, this can be solved as a
constrained linear minimum norm problem:
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where the first constraint rejects negative interaction gains, the
second constraint forces (3) to be solved exactly, and the third
FRQVWUDLQW�UHMHFWV�]HUR�DQG�XQLW\�LQWHUDFWLRQ�JDLQV��WKDW�LV�� �LV�D

small parameter greater than zero.  The advantage of
formulating (3) as a constrained least squares problem is that we
can eliminate nonzero interaction gains from the set of possible
solutions.  Since zero interaction gains correspond to a vehicle
not utilizing information of its nearest neighbors, it is best to
look at nonzero interaction gains.

We now turn to the problem of analyzing stability of the N
vehicle interaction problem.  For this, a reformulation of the
vehicle dynamics into discrete-time state space is helpful.  The
purpose of this analysis is to determine conditions for
asymptotic stability of vehicle positions with respect to the
LQWHUDFWLRQ�JDLQV� �DQG�YHKLFOH�VSHHG�WLPH�FRQVWDQW�KpT where T
is the sample period.  The following time-domain equations are
derived from Fig. 4:
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where it is assumed that uN(k)=0 and the delay between position
interaction information is one sampling delay.  To solve these
equations, initialize by setting yi(0)= yi(1)=0 for i between 1 and
N (note that initial vehicle positions do not have to start at 0, but
this is the normal case).  Then start the difference equation
solver at k=1 (i.e. compute yi(2)).  For the stability analysis, we
note that we can put (4) into a state space description.  We break
the analysis into two cases.
Case I: If all the interaction delays =0, i.e. nij=0 then we get the
following state space description:
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which is in the form: y(k+1) = Ay(k) + Bu1(k).  The eigenvalues
can easily be solved for in any of a number of software packages
including MATLAB.  For stability, we look at the maximum
absolute value of all the eigenvalues of A, which is a real NxN
matrix.  If this is inside the unit circle (less than unity
magnitude) then we have asymptotic stability of the vehicle
positions.  Otherwise, we do not have a stable vehicle
configuration.  Note that the A matrix above is in tridiagonal
form.  For the special case of all the interaction gains ij� � ��WKH

elements of each diagonal are equal.  There is a special formula
(p. 59 of [2]) for the eigenvalues of A in this case which is
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All the eigenvalues in (5) will be real.  Figure 4 illustrates the
stability region for this case.  The dark zone represents stable
FRPELQDWLRQV�RI�LQWHUDFWLRQ�JDLQ� �DQG�KpT (proportional control
gain multiplied by the sampling period).  The white zone
UHSUHVHQWV�XQVWDEOH�FRPELQDWLRQV�RI� �DQG�KpT.  We refer to this
as a stability “house” due to the shape of the stable zone.  The
size of this house varies only with N.  The plot shown is for
N=2.  As N is increased, the house gets smaller in width but
maintains the same height and shape.  Figure 5 shows the
stability region for N=10000.  From the formula in (5), we can
see that as N ��WKH�FRVLQH�WHUP�EHFRPHV�XQLW\���7KLV�LPSOLHV

WKDW� �PXVW�VWD\�EHWZHHQ�±����DQG�����IRU�KpT less than one in
order to maintain stability.  For KpT greater than one, the

DGPLVVLEOH� �YDOXHV�WDSHU�RII�parabolically (the sloped “roof”)
until KpT =2.  Computer simulations of (4) agreed with these
stability results.

Figure 4. Stability region for the N=2 vehicle case.

Figure 5.  Stability region for the N=10000 vehicle case.

Case II: If all the interaction delays =1, i.e. nij=1, then we get a
more complex state space description:
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The above still fits the y(k+1)=Ay(k)+Bu1(k) formulation.  Note
now that A is a 2Nx2N matrix.  It is also no longer a tridiagonal
matrix.  There is no simple formula for the eigenvalues of A in
this case even if all ij� � ���7KH�eigenvalues can still be solved
for using standard linear algebra software, but this becomes
numerically unreliable for large N.  However, if a software
package has techniques for handling large sparse matrices (as
does MATLAB) then it becomes more tractable.  In the above
description, only 4N-2 elements of A are nonzero in general out
of 4N2 total elements.  Thus for large N, the A matrix is sparse.
Though a formula is lacking, computer simulation of (4) and
solving for the maximum absolute eigenvalue of A above
UHVXOWHG�LQ�H[DFWO\�WKH�VDPH�VWDELOLW\�UHJLRQV�ZLWK�UHVSHFW�WR�

and KpT .  In other words, the delay in interaction gains between
vehicles did not affect the stability of the vehicle positions to
any appreciable degree.

A more specific case can be studied in which all forward ij’s
DUH�HTXDO��L�H�� 12� � 23 = …= F ) and all backward ij’s are
HTXDO��L�H�� 21� � 32 = …= B ).  In this case the stability region
has a three-dimensional structure, KpT vs. F vs. B.  Numerical
simulation of this case revealed that for various fixed KpT
contours from 1 to 2, the stability region for F and B looked
OLNH�D����  surface that increased in size as KpT decreased from 2
down to 1.  This is intuitive because we expect the range of ’s
for stability to shrink as the speed gain is increased.  This is
essentially a three dimensional version of the “roof” of the
stability house in Figs. 5 and 6.

Several conclusions can be drawn from the stability analysis.
First, asymptotic stability of vehicle positions depends on
vehicle responsiveness Kp, communication sampling period T,
DQG�YHKLFOH�LQWHUDFWLRQ�JDLQ� ���,I�WKH�YHKLFOH�LV�WRR�IDVW��ODUJH

Kp) or the sample period is too long (large T) then the vehicles
will go unstable.  There is a dependence on interaction gain for
stability as well.  Second, the interaction gains can be used to
bunch the vehicles closer together or spread them out.  Third,
the stability region shrinks as the number of vehicles, N,
increases but only to a defined limit.  Finally, we can give a two
step process for placing the vehicles into an arbitrary position.
First, solve Eq. (3) for the ij’s necessary to achieve these
vehicle positions.  Then, use the above stability analysis (the
stability “house”) to determine the upper limits for KpT to
maintain stability.

3.  Simulation Example

The multiple-vehicle problem in planar space is essentially a
generalization of the above analysis.  But when obstacles such
as walls and other vehicles as well as the need for
communication between vehicles are taken into account, the
ability to analytically solve the problem becomes very difficult.
Thus, we implemented a study of multiple vehicles under such
constraints in a simulation environment developed at Sandia
National Laboratories called Umbra [6].  Umbra enables the
simulation of multiple autonomous agents with a variety of
physical phenomena such as RF communications, interactions
with solid objects (i.e. collisions), ultrasound communication, IR
detection of objects, vehicle physics, terrain descriptions, and
other phenomena the user wishes to study.  All of these physical
attributes can be simulated simultaneously with a graphical
visualization that allows the monitoring of the vehicles’
performance over the terrain.

Such a simulation was implemented for the case of multiple,
small, wheeled vehicles traversing a single floor in a building
with multiple corridors, rooms, and entrances.  The vehicles are
modeled after the vehicles that will be used in the hardware
tests.  Each vehicle contains 4 IR sensors for detecting objects
between 0.15m and 0.46m on all 4 sides of itself (see Figure 6).
The vehicles also contain RF communication devices to be able
to converse with other vehicles within a 30m line of sight range
or roughly 10m through walls.  They also have ultrasound
capability to measure the distance between them provided they
are within 10m of each other and in line of sight range.  The
vehicle physics are quite simple and proved adequate on a
smooth surface.  The building model was generated as a CAD
model and contains several connected hallways as well as a
multitude of variable size rooms.  The control algorithms for the
vehicles must avoid contact with walls and other vehicles.
Beyond that, the control goals can vary depending on the
motives of the operator.  For instance, the vehicles can spread
out to provide maximum coverage of the building or they can
stay within a prescribed area, or they can maintain a particular
formation.  Note that a strict mathematical model of this
situation is intractable. This is due to both discrete event-based
as well as dynamic physics with very complicated interactions.
Thus, the simulation shows stability in a qualitative fashion
rather than strictly mathematical.  However, future work will
focus on demonstrating that these control algorithms are robust
to modeling uncertainty.

The restriction that vehicles can’t run into walls, doors, or each
other essential ensures they remain inside the building.  This is
accomplished via rules that use the IR sensors to follow walls
down a hallway.  This will enable the vehicles to move
throughout the building, though not necessarily in any
prescribed fashion.  Further restrictions on the vehicles involve
the maintenance of a continuous RF communication network.
This requires that vehicles stay within 30m of each other or less
if line of sight (LOS) is lost (i.e. they may have to stay at a wall
junction to maintain LOS).  A more stringent condition is the
ability for each vehicle to know its absolute (x,y) position with
respect to some global coordinate system.  This requires
triangulation from two known vehicles using ultrasound as a
distance measurement.  This implies that at least two vehicles
must remain in fixed known locations until the other vehicles
can triangulate off of them.  There are a number of techniques to
accomplish this that were investigated in Umbra.  These include
the law of cosines triangulation, steepest descent triangulation,
and conjugate gradient triangulation.  All had advantages and
disadvantages depending on the number of vehicles and the on-
board processing power and memory.  Finally, there is the
constraint that the vehicles spread out and “cover” the building
uniformly.  A gradient-based scheme was used to repel the
vehicles from each other to diffuse through the building while
the aforementioned constraints keep them close enough to
communication and compute absolute position.  There are a
variety of strategies for keeping the vehicles in contact with each
other, both RF and ultrasound, to keep the communication loop
intact.  But the gradient-based scheme worked well because it
minimized the number of vehicles needed to maintain the RF
loop while still spreading the vehicles throughout the building.

It should be noted that the primary classes of vehicle maneuvers
fall into 4 categories: 1) dispersion (diffusing throughout a
space), 2) clustering (coming together to surround a target), 3)



following (fairly linear progression through a space), and 4)
orbiting (circular motion around a target).  One technique we are
investigating for coordination of these 4 maneuver types is
sliding mode control.  The sliding mode controller will switch
between each category of vehicle maneuvers according to what
is best to achieve overall stability and satisfaction of the target
goals.  Some preliminary work we have done in this area
appears in [3].

Figure 6.  Detailed simulation of multiple vehicles navigating a
building.  The protruding green and blue cones represent the 4
IR proximity sensors.

Finally, some additional simulation in MATLAB shows a group
of vehicles dispersing in an enclosed region.  Figure 7 illustrates
a group of 20 vehicles that starts in a tightly clustered position.
They are tasked with the goal of spreading out uniformly in a
room with walls determined by the boundaries of the graph. The
results in Figure 7 show that the vehicles have spread out
through the room fairly uniformly using a gradient-based
scheme.

4. Conclusions

Work presented in this paper studies the stability problem of a
multitude of autonomous robotic vehicles cooperating towards a
prescribed goal.  The analysis utilizes large-scale system theory
and the control strategy is primarily decentralized to reduce
communication overhead while maintaining a considerable
amount of control authority at the vehicle level.  This provides a
degree of robustness should some of the vehicles fail.  The
analysis focuses on the linear case of vehicle motion and shows
the stability regions.  The simulation looks at a more complex
situation with obstacles, RF communication, ultrasound position
triangulation, and IR for obstacle avoidance. Hardware
demonstrations of these vehicles and control strategies are in
progress.  We have built 20 low-cost robotic vehicle platforms,
which contain the necessary processing and sensing to navigate
and traverse a building.  Currently, we are implementing many
of the algorithms described above on these 20 vehicles.  The
goal of the simulation and the hardware tasks is to demonstrate
that a cooperative group of robotic vehicles can form a

communication/navigation network, and that this network could
be applied to a surveillance task.

Figure 7.  Plot of 20 vehicles’ trajectories started from a
clustered position with the goal of spreading out uniformly
through the space (* indicate initial position and + indicate
final position).
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